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Abstract 

The dynamical theory based on the plane-wave 
expansion of Bloch waves is applied to problems of 
electron diffraction by reflection at crystal surfaces. 
It is mainly aimed at reflection high-energy electron 
diffraction (RHEED), but may be applied also to 
medium- and low-energy electron diffraction (MEED 
and LEED). It is shown that the theory leads to a 
quadratic matrix eigenvalue problem, which can be 
expanded into a linear matrix eigenvalue problem by 
applying two alternative standard methods of matrix 
theory, the Giinther expansion and the diagonal 
expansion of Falk. These methods are shown to be 
equivalent to the expansions of the system of second- 
order ordinary differential equations, obtained by the 
two-dimensional Fourier expansion of the Schr6din- 
ger equation, into systems of first-order differential 
equations. The equivalence enables a physical inter- 
pretation of the quantities introduced in the matrix 
methods to be given. 

1. Introduction 

The dynamical theory of electron diffraction by crys- 
tals has been developed in two alternative ways. One 
originates from the theory (Bethe, 1928; Sommerfeld 
& Bethe, 1930) of low-energy electron diffraction 
(LEED) using the plane-wave expansion of Bloch 
waves inside the crystal. The other uses the layer-by- 
layer scheme, which has its origin in Darwin's (1914) 
theory of X-ray diffraction, and has found powerful 
extensions in the multi-slice method of Cowley & 
Moodie (1957) [see also Cowley (1981)] for high- 
energy electrons in the transmission case and in the 
mixed scheme using both plane waves and spherical 
waves in the LEED theory (Pendry, 1974). 

Particularly in the case of reflection at crystal sur- 
faces (RHEED, MEED, LEED) the layer-by-layer 
method can be seen to be the proper one, because 
the non-periodic variation of the potential in the 
normal direction at the surface can be naturally incor- 
porated. Nevertheless, there are cases in which the 
development of the theory in Bethe's original form 
is necessary. This is true when we have to compare 
the results with those of corresponding transmission 
cases. An example is the recent findings of Lehmpfuhl 

0108-7673/88/060885-06503.00 

& Dowell (1986) revealing a much closer parallelism 
of the many-beam diffraction effects between the 
transmission and reflection cases than would have 
been expected in view of their quite different 
geometries. 

One of the main reasons for the success of the 
dynamical theory in the transmission case is that the 
forward-scattering approximation is valid. This is true 
for both the Bloch-wave theory and the multi-slice 
theory. For the Bloch-wave theory using the plane- 
wave expansion one arrives at a linear matrix eigen- 
value problem in virtue of the forward-scattering 
approximation. In the reflection case, on the other 
hand, one arrives at a quadratic matrix eigenvalue 
problem, which needs special care in treatment. 

In the recent book of Zurmiihl & Falk (1984) the 
present author has encountered a method of lineariz- 
ation of matrix eigenvalue problems which has been 
newly developed by Falk (1984) and called by him 
the diagonal expansion method. The method proves 
to be quite suitable for our problem and to be closely 
connected to the well known two-dimensional Fourier 
expansion of the Schr6dinger equation. The purpose 
of the present paper is to introduce the method in 
parallel to the usual one, which is called by Falk 'the 
GiJnther expansion', and to give a physical inter- 
pretation by means of comparison with the two- 
dimensional Fourier expansion. 

2. Quadratic matrix eigenvalue problem 

The usual dynamical theory in the form of plane-wave 
expansion is developed here along the lines of 
Lehmpfuhl & Moli~re (1961) and Lehmpfuhl & Reiss- 
land (1968) [cf. Kambe & Moli~re (1970)]. 

We write the incident wave in vacuum as 

~be(r) = exp (iKoSe. r), (2.1) 

where Ko is given by 

Ko = (2mE)W2~ h, (2.2) 

and Se is the unit vector in the direction of progaga- 
tion. The wave function inside the crystal is written as 

~(r) = Y~ ~g exp (iKoSg. r), (2.3) 
g 
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where g represents the triple index gi, g2, g3, 

Sg = So + Bs, 

and 

(2.4) 

B~ = 2zrg/Ko, (2.5) 

g being the reciprocal-lattice vector. We specify the 
choice of So by requiring its tangential component to 
be equal to that of Se (see Fig. 1), and put 

So = Se + 7"Ne, (2.6) 

where N, is the unit vector representing the inward 
normal of the surface. 

Substituting (2.3) into the Schr6dinger equation, 

( h 2 / 2 m ) V 2 d / ( r ) + [ E  - V(r)]~(r)  = 0, (2•7) 

we obtain the system of 'basic equations of the 
dynamical theory',  

( l + e o - S 2 ) q J g  + X q~s-hqJh=O, (2.8) 
h # g  

where the ~%'s are defined by the Fourier expansion 
of the periodic potential divided by E, 

- V ( r ) / E = ~ ,  q~s exp (iKoBs • r), (2.9) 
g 

~Oo being the constant term. We put 

as = (1 - I s ,  + Bs[2)/2 (2.10) 

and get the coefficient of qJs in (2.8) in the form 

1 + q~o- S 2 = q~o + 2pg - 2/38,7- - 72 _= Ds (7-), 
(2.11) 

where 

~[~ge ~- (Se "+" Bg)  • Ne • (2 .12)  

In the case of transmission problems /3s, is much 
larger than p~ and ~8, so that we can neglect 7"2 in 
(2.11) from the beginning. This leads to a linear 
eigenvalue problem for 7". For reflection problems/3s~ 
can become small or even vanish, so that the term 7" 
cannot be neglected. It is then convenient to put 

2 2 
yg = 90+ 2p s + fig, (2.13) 

Oo 13. S. Bg =Bmp 

II ..... i__iii_  
Fig. 1. Geometry of wave vectors and their normal components 

indicated on the left. Note that /3ge, 7- and tro are in reality 
complex numbers. 

and write (2.11) as 
2 Ds(7") = y g -  (fl,, + 7-) 2 . 

The system (2.8) is written in the matrix form 

.. D:(7-) ~_g ~-h . . .  ~bo 

~s Dg(7-) q~g-h 
~h ~Ph -g Dh (7") i 

(2.14) 

=0,  (2.15) 

representing a quadratic matrix eigenvalue problem• 
In the context of reflection problems (Colella, 1972; 

Moon, 1972) it is important to recognize the particular 
structure of the matrix of (2•15). For this purpose the 
reflection indices g are decomposed into m, indices 
of the reciprocal-lattice rods lying normal to the sur- 
face, and p, along one rod. We write g--mp.  It can 
easily be seen from (2.10), (2•11) and (2•13) that )'s 
depends only on the rod index m, that is, 

yg= y ' .  (2.16) 

Geometrically (see Fig. 2) 3'., is the half of the segment 
of the surface normal going through Se cut out by 
the sphere centred at the reciprocal-lattice point 
g = m p  with the radius (1 +q~o) t/2 (all measured in 
units of Ko), if q~o was real. [The sphere is the gth 
branch of the dispersion surface (Kambe & Moli~re, 
1970) if all ~%'s vanish except q~o.] Further we find 
from (2.12) that/3~e is given by 

/3ge =/3.,p + fie, (2.17) 

where /3.,p and /3e are the normal components of 
Bg = B.,p and Se (see Fig. 1). We write 

fig, + 7- = fl.,p +tro, (2.18) 

where 

Cro=/3,+ z (2.19) 

is the normal component of So (see Fig. 1). 

rod 0 rod m 

Jl + q~o I 

""- g=mp 

Fig. 2. Geometry of  yg = %. and B.,,. Note that 'Po and Ts are in 
reality complex numbers. 
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The expression (2.14) becomes 

Dg(7")= D,,p(O-o)= y~-(/3, ,p+~ro) ~, (2.20) 

and the system (2.15) can be written 

. . .  Dm~(~o) ~.-m.~-~ " '" ~""  = 0 .  (2.21) 

We find that a submatrix of (2.21) pertaining to one 
rod m is equivalent to the matrix, the determinant of 
which is known as Hill's determinant (Moon, 1972). 
The determinant of the matrix of (2.21) is called by 
Lamla (1938a, b) the generalized Hill's determinant 
and is shown to have only 2 Nrod non-equivalent 
eigenvalues if we take into account Nrod rods. 
Naturally we are interested only in Nrod eigenvalues 
which lead to Bloch waves decaying into the crystal. 
Here we are not going further into the evaluation and 
selection of solutions. 

3. Linearization methods 

We go back to the form (2.15) mainly for brevity of 
the notation. The diagonal elements Dg(7") are quad- 
ratic polynomials of 7" given by (2.11) or (2.14). In 
order to have access to various standard treatments 
of linear eigenvalue problems it is convenient to trans- 
form (2.15) into an exactly equivalent linear form. 
Thus, the term linearization is used here not as a kind 
of approximation. 

3.1. Giinther expansion 

The simplest form of linearization is to introduce 
new unknowns Xg in the form 

Xs = (flge + 7-)~kg. (3.1) 

Then the diagonal elements become 
2 2 D g (  7")@g r--- [ 'yg - (J~ge'q- 7")2]~g = yg~lg - -  ( f l g e  q-  7")Xg" 

(3.2) 

Combining (3.1) with (2.15), into which (3.2) is sub- 
stituted, we have the system 

-flo~ - r 0 0 . . .  1 0 0 

0 -~0g e - r 0 . . .  0 I 0 

0 0 --flhe - r . .. 0 0 1 

i i i i i : 
r~, ~-~ ~-h . . .  -13oe- r 0 0 

2 ~o Y~ ~s-h . . .  0 - /3~ - r 0 

tp n ~oh_g 2 ,2 . . .  0 0 -Bh,  - "r 

i i i i i i 

¢6 

Cs 

XI 

Xj 
g~ 

=0. 

(3.3) 

This transformation from an N x N matrix to a 

2N x 2N matrix is called the Gfinther transformation 
(Zurmfihl & Falk, 1984, p. 320). The physical 
interpretation of the Xg'S is given below. 

3.2. Diagonal expansion 

The method introduced by Falk (1984) (see Zur- 
mfihl & Falk 1984, p. 323) is adapted here to our 
problem without going into the details of derivation. 
The system (2.15) can be shown to be equivalent to 

l . . . . . .  

D0t(r) 0 (~-g (~-g (~-h (~-h 

0 Do2(7.) ¢-g ¢-g ¢-h ¢-h 
Cg Cg Dgt(r) 0 ¢~-h ¢~-h 
g~g ~pg 0 Dg2(7 . )  ~Pg-h Cg-h 

(~h (~h ~Ph-g  ~Ph-g D h  1(7.) 0 

Ch ff~h ff~h-g ~0 h _g 0 Dh2 (7") 

to 

th r~ t i l !  = O" 

(3.4) 

Each diagonal element Dg(7-) of (2.15) is replaced 
here by a 2 x 2 diagonal matrix with diagonal elements 
given by 

Dg,(7-) = (7-gl- 7-g2)(7-g~ - r), (3.5) 

Dg2(r) = (7-g2- rg,)(7-g2- r), (3.6) 

where rgl, rg2 are the roots of the quadratic equation 

Dg(r) =0.  (3.7) 

The roots are assumed to be different from each other. 
In 113.4) each non-diagonal element ~g-h of (2.15) is 
replaced by a 2 x 2 matrix having all its elements equal 
to ~g-h. Each unknown 0g is replaced by two 
unknowns, 

tg = 7-g2- 7- ~bg, (3.8) 
Tg2--  Tgl 

rg = % i  -- 7" 6g .  (3.9) 
7"gl--Tg2 

Obviously 

and 

rg + rg = Og, (3.10) 

Dg,(r)tg= Dg(r)@g, (3.11) 

Dg2(r)rg = Ds(r)~Sg, (3.12) 

verifying that the gth two equations of (3.4) are both 
equivalent to the gth equation of (2.15). Conversely, 
(2.15) can be derived from (3.4), regarded as given, 
by constructing the difference and sum of the gth two 
equations, 

Dg~(7-)tg - Dg2(r)rg =0,  (3.13) 

Dg,(r)tg+ Dg2(r)rg+2 E (q~g-hth +~Pg-hrh):O. 
h~g 

(3.14) 
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Equation (3.13) allows with (3.5) and (3.6) the 
introduction of 4,, by (3.8) and (3.9), and their substi- 
tution into (3.14) leads to an equation exactly twice 
the gth equation of (2.15). 

From our special form of D, ( r )  given by (2.14) we 
choose 

r,~ = -/3, ,  + y,, (3.15) 

7 , 2  = - - / 3 , e  - -  Y , "  (3.16) 

Then 

Dsl(r)  = 2y , ( - /3 , ,  + y, - r) 

= 2ym(y" --/3rap -- Cro), (3.17) 

D,2(r) = -2y,(-/3s,- y, - z) 

= - 2  y" ( -  %,, -/3"p - O'o), (3.18) 

where we have taken into account (2.16) and (2.18), 
and 

t, = -/3,` - 3', - r - ym -/3me - cro 
27g @" = 27,. ¢, ,  (3.19) 

- 1 3 , .  + y ,  - r y . .  - / 3 . .  e - cro 
r, = - 2 y ,  ~g = -2y=  ~'" (3.20) 

Putting again g = m p  we have from (3.4) the 
equivalent form 

/ . . . .  t// 
• 23, , . (3 , , .  0 ~o,"_,a,_ q q~,"_,.p_q . . .  t,, w 

- / 3 , " ~  - cr o) = 0. 

0 - 2 3 , , . ( - 3 , , .  ~ P m - . . p - q  ~ P , . - . . p - q  - . .  r t, 

- ~,.. - Oo) 
• . • . 

(3.21) 

For the applicability of the method it is essential that 
the two roots of the quadratic equation (3.7) given 
by (3.15) and (3.16) be different from each other. This 
means 

7 g # 0  (3.22) 

for all g's. According to (2.13) this means 

¢o+2p,  +/3~, ~ 0. (3.23) 

After (2.10) and (2.12) p, and 13g, are always real. 
They may be, under the conditions of reflection, nega- 
tive or vanish. The potential ¢o is, however, a complex 
constant. The magnitude of the imaginary part of ¢o, 
representing the 'absorption' (Kambe & Moli~re, 
1970), may be comparable to p, or/3~, and, therefore, 
should not be neglected even in the first approxima- 
tion. This guarantees that the condition (3.23) is 
always satisfied. 

It is to be noted that we have to deal with the 
diagonalization of a complex non-Hermitian matrix 
of (3.4) or (3.21). We obtain complex eigenvalues r 
or ¢ro, from which we are interested, as already men- 
tioned, only in Nroa eigenvalues. 

4.  T w o - d i m e n s i o n a l  F o u r i e r  e x p a n s i o n  

It is known that the system of quadratic equations 
(2.8) is equivalent to the system of second-order 
ordinary differential equations, which are derived by 
Fourier expansion of the Schr6dinger equation in the 
two dimensions parallel to the surface (e.g. Lamla, 
1938a, b; Toumarie, 1962; Kambe, 1967; Lynch & 
Moodie, 1972; Maksym & Beeby, 1981; Ichimiya, 
1983). The linearizations carried out above are shown 
here to be equivalent to the expansion of the system 
into a system of first-order differential equations. 

The potential is expanded in the form 

- V ( r ) / E = ~ .  q~, , (z )exp( igoB", . r , ) ,  (4.1) 
m 

where z and r, are the normal and tangential com- 
ponents of r, m is again the rod index, B", is the 
vector in the reciprocal space (in units of go) directed 
from the origin perpendicular to the rod m (Fig. 2). 
The wave function is written as 

~ ( r ) = ~  ~"(z)exp[iKo(Sot+B"t).r,], ( 4 . 2 )  
t r l  

where Sot is the tangential component of So or S, [ el. 
(2.6)]. Substituting (4.1) and (4.2) into (2.7) we obtain 
the system of second-order differential equations 

1 d 2 

r o  ~ dz 2 q,"(z) + ~'~ ~,m (z) + ~ ' ~ m - . ( z )  ~,. (z) = 0, 
t l  

(4.3) 

where 

72 = 1 + ~po-ISo, + B,ml 2. (4.4) 

The prime in the summation of (4.3) indicates that 
the term ¢OOm(Z) is excluded. It can easily be seen 
that 7,1 given by (4.4) is identical to yg given by 
(2.13). Various alternative ways may be conceived for 
expanding the system (4.3) into a system of first-order 
differential equations (Tournarie, 1962; Lynch & 
Moodie, 1972; Maksym & Beeby, 1981; Ichimiya, 
1983). We present here two typical ones which are 
equivalent to the matrix expansions described above. 

It is to be noted that the method using (4.3) can 
be regarded as one of the multi-slice methods. The 
finite small increments of z used in a numerical solu- 
tion of (4.3) may be regarded as the slice thicknesses. 
The potential need not be periodic in the z direction. 
If, however, the potential is periodic, then the plane- 
wave expansion can be introduced and shown to lead 
to the same equations as (3.3) or (3.21). 

4.1. Equivalent method to the C_riinther expansion 

The most usual method, used by Tournarie (1962) 
and Lynch & Moodie (1972), is to introduce new 
functions 

X,,(z)=(iKo)  -1 dO,,(z)/dz. (4.5) 
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From (4.3) we have 

- ( iKo)  -l dx . , ( z ' ) / d z+y~O, . ( z )  

' Z +Y~ q~,._.( )qJ.(z)=0. (4.6) 
i1 

The system of first-order differential equations (4.5) 
and (4.6) replaces (4.3). We are interested here in the 
case of a periodic potential given by 

~o,.(z) = ~ q~,.pexp(iKoflmpZ), (4.7) 
P 

where/3,.p is again the normal component of B.,p (cf 
§ 2). The functions q6.(z), X,.(z) are expanded in the 
form 

q6,,(z) = Y~ q6,wexp[iKo(fl,.p+Cro)Z], (4.8) 
P 

X,.(z)=~X,.pexp[iKo(f l , .p+Cro)Z],  (4.9) 
p 

where Cro is again the normal component of So (e l  § 2). 
From (4.5) and (4.6) we have 

X,,,p = (flmp + Cro) qJ,,,p, (4.10) 

2 y/ 
- ( /3 . ,~  + ~ro)Xm~ + ~ m  ~0~.~ + ~o . ,  _ . .  ,, _ ,, 4 , .  ,, = o .  

n q  

(4.11) 

We find that (4.10) and (4.11) are identical to (3.3), 
taking into account (2.16) and (2.18). 

4.2. Equivalent method to the diagonal expansion 

A similar method used by Maksym & Beeby (1981) 
and Ichimiya (1983) is to introduce two functions, 
assuming that y,, given by (4.4) does not vanish, 

t.,(z) = / - ~  IPm(Z)+ iy,.~m(Z) , (4.12) 

r " ( z ) -  1 [ d ] 
i2y,. -~z q6"(z) - iy"q6"(z)  ' (4.13) 

and derive from (4.3) 

2y , . [d t , . ( z ) /dz  - iy,.t,.(z)] 

- i ~  q~, ._.(z)[t , . (z)+r, . (z)]=O, (4.14) 
n 

- 2y, .[dr, , , (z) /dz + iT,,,r,,(z)] 

- i Z  q~,._,(z)[t, ,(z)+rm(Z)]=O. (4.15) 
?1 

This is the system of first-order differential equations. 
In the case of the periodic potential (4.7) we put 

tm(Z) = Y~ t,,pexp[iKo(B,,p+Cro)Z], (4.16) 
P 

r,.(z) = ~ r,,,pexp[iKo(~mp+O'o)Z], (4.17) 
P 

and obtain from (4.14) and (4.15) 

2%.(3% -/3,,p - Cro) t,,p 

+ 5". ~ , . _ . . , , _ , , ( t . , ,  + r , ,q)  = O, 
n q  

(4.18) 

-27, .  ( -  Ym --/3,~p -- ¢ro) rmp 

+ ~. ~m-.,p-q ( tnq + rnq ) =0. 
n q  

(4.19) 

We find that these equations are identical to (3.21). 
We note again that the applicability of this method 
depends on the non-vanishing value of 7,,, just as 
discussed in § 3.2. 

5. Discussion 

The equivalence demonstrated above enables us to 
give a physical interpretation of the new variables 
introduced in the linearization of the matrix eigen- 
value problem. 

Thus, the equivalence between (3.3), (4.10) and 
(4.11) indicates that the quantities Xg in § 3.1 are 
nothing but the expansion coefficients of the deriva- 
tive of the wave function in the z direction. 

The quantities t,,,p and rmp in § 3.2 can be inter- 
preted as follows. From (4.3) we find immediately 
that if all q~,,'s except q~o vanish the solution is given 
by 

~m(z) = t (°) exp (iymz)+ r~ ) exp (-iTmz), (5.1) 

and the transformation of ~m(z) to tin(Z), rm(z) given 
by (4.12) and (4.13) leads to 

tin(Z) = -m,'(O) (5.2) 

r,.(z) = r,, (5.3) 

We see that these are the amplitudes of the forward 
and backward propagating waves which constitute 
the wave function in the constant potential ~o. This 
property is approximately maintained by tr,(Z) and 
r,,(z) in the periodic potential if the potential modula- 
tion is not too large. The forward and backward waves 
are also periodically modulated, and t,,p, r,,p are their 
Fourier coefficients. In the layer-by-layer schemes in 
LEED or RHEED (Pendry, 1974; Pendry & Gard, 
1975) these forward and backward waves are also 
explicitly used in the constant (muffin-tin zero) poten- 
tial regions between the atomic layers. Obviously an 
equivalent form to the usual forward-scattering for- 
mulation of the transmission case can be obtained by 
neglecting the backward waves r,,,p or r,,(z). 

In conclusion, the diagonal expansion of the quad- 
ratic matrix appears to be the proper way of applying 
the Bloch-wave theory in the plane-wave expansion 
form to the reflection case. It enables us rather 
naturally to find the relation to the transmission case 
as well as to other methods (multi-slice etc.) of treating 
the reflection case. 
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Thanks are due to Dr G. Lehmpfuhl for valuable 
discussions which led the author to the present study. 
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Abstract 
The influence of the crystal shape on the fine structure 
of transmission electron diffraction (TED) patterns 
described by the crystal shape amplitude is discussed. 
A general algebraic expression for the crystal shape 
amplitude of any crystal polyhedron is used for com- 
puting the intensity distribution of TED reflections. 
The computer simulation method is applied to the 
analysis of the fine structure of TED patterns of small 
gold and palladium crystals having octahedral and 
tetrahedral habits. 

I. Introduction 
In electron diffraction of small crystals spots are 
frequently observed which have distinct fine structure 
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consisting of streaks, satellites or elongations. The 
shape of any diffraction spot is mainly determined 
by the shape of the crystal as well as by the presence 
of crystal defects. The contribution of the crystal 
shape to the fine structure of the reflections can be 
described within the framework of the kinematical 
diffraction theory. The intensity distribution around 
each reciprocal-lattice point g is then given by 

lhk,(p) = IFhk,121S(p)l ~ (1) 

where, for the lattice point g, Fhk ! is the structure 
amplitude and S is the shape amplitude, which is the 
same around every reflection. In electron diffraction 
the kinematical approximation usually fails and the 
exact calculation of the scattered intensities requires 
a dynamical treatment. A dynamical theory of the 
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